Biosynthetic study of amphidinolide C

Takaaki Kubota, Masashi Tsuda and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
Received 4 April 2001; accepted 7 May 2001

Abstract—The biosynthetic origins of amphidinolide C (1) were investigated on the basis of 13 C NMR data of 13 C enriched samples obtained by feeding experiments with $[1-^{13}C]$, $[2-^{13}C]$, and $[1,2-^{13}C_2]$ sodium acetates in cultures of a dinoflagellate *Amphidinium* sp. These incorporation patterns suggested that amphidinolide C (1) was generated from four diketide chains, four acetate units, five isolated C_1 unit from C-2 of acetates, seven branched C_1 units from C-2 of acetates, and a ' $\mathbf{m}-\mathbf{m}$ ' and a ' $\mathbf{m}-\mathbf{m}-\mathbf{m}$ ' units derived only from C-2 of acetates. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Marine dinoflagellates have been recognized as a rich source of secondary metabolites possessing unique structures and interesting bioactivity. Amphidinolides C^{2,3} (1) and F, first isolated from dinoflagellates Amphidinium sp. (Y-5 and Y-26 strains, respectively), are unique 25membered macrolides having two tetrahydrofuran rings and vicinally located one-carbon branches. Particularly, amphidinolide C (1) exhibited potent cytotoxicity against tumor cells. During our search for bioactive and structurally unique secondary metabolites from marine dinoflagellates, a strain (Y-71) of the genus Amphidinium producing relatively large amount of amphidinolides C (1), B, ⁶⁻⁸ and T1, ⁹ has been recently separated from the inside cells of a marine acoel flatworm Amphiscolops sp. collected off Sunabe, Okinawa. The biosynthetic origins of amphidinolide C (1) were investigated by ¹³C NMR data of the ¹³C-enriched samples obtained by feeding experiments with ¹³C-labeled acetates in culture of the Y-71 strain of Amphidinium sp. Here we describe unusual labeling patterns of 1 with acetates.

2. Results and discussion

The dinoflagellate *Amphidinium* sp. (strain Y-71) was cultured in a 100 L nutrient-enriched seawater medium, and feeding experiments were carried out with [1- 13 C], [2- 13 C], and [1,2- 13 C2] sodium acetate. In feeding experiments, the dinoflagellate was supplemented with 610 μM of labeled precursors in one portion at 7 days after inoculation, and then the culture was harvested by centrifugation after 14 days. In each case the extracts of the harvested cells

were purified by a silica gel column followed by C_{18} HPLC to afford 13 C-labeled amphidinolide C (1) (Chart 1) in 0.0008% yield from as an average from wet weight of the cells.

Chart 1. Structure of amphidinolide C (1).

Assignments of ¹³C NMR signals and isotope incorporation results of 1 derived from ¹³C-labeled sodium acetate were shown in Table 1 and Fig. 1. The ¹³C NMR spectra (CDCl₃ and C_6D_6) of 1 derived from [1- 13 C] sodium acetate showed significant enrichment of 12 carbons (C-1, C-4, C-7, C-9, C-13, C-16, C-18, C-21, C-24, C-26, C-31, and C-33). On the other hand, enrichment by [2-¹³C] sodium acetate was observed for 29 carbons (C-2, C-3, C-5, C-6, C-8, C-10, C-11, C-12, C-14, C-15, C-17, C-19, C-20, C-22, C-23, C-25, C-27, C-28, C-29, C-30, C-32, C-34, C-35, C-36, C-37, C-38, C-39, C-40, and C-41). Thus all the 41 carbon signals contained in **1** were shown to be labeled by acetates. The ¹³C NMR spectrum of 1 labeled with [1,2-¹³C₂] sodium acetate showed enriched carbon signals flanked by two strong satellite signals. One-bond $J_{\rm CC}$ coupling constants measured in benzene- d_6 indicated the definite incorporation of 12 acetate units for C-1/C-2 (58.3 Hz), C-4/C-5 (32.7 Hz), C-7/C-8 (39.2 Hz), C-9/C-10 (54.5 Hz), C-13/C-14 (38.7 Hz),

Keywords: biosynthesis; macrolide; dinoflagellate.

^{*} Corresponding author. Tel.: 81-11-706-3239; fax: +81-11-706-4985; e-mail: jkobay@pharm.hokudai.ac.jp

Table 1. Isotope incorporation results based on the ¹³C NMR data of amphidinolide C (1)

Position	$\delta_{ m C}$	Intensity ratio (labeled/unlabeled) ^a		δ_{C}	Intensity ratio (labeled/unlabeled) ^b		Assignment c or m ^c
		[1- ¹³ C]-Acetate	[2- ¹³ C]-Acetate		[1- ¹³ C]-Acetate	[2- ¹³ C]-Acetate	
1	171.09 s	2.69	0.92	171.09 s	2.89	1.18	С
2	38.61 t	1.47	4.28	39.22 t	0.80	2.62	m
3	81.17 d	1.44	3.82	81.77 d	0.78	3.12	m
4	30.68 d	3.56	1.04	40.22 d	3.01	1.33	c
5	36.64 t	1.56	4.05	37.04 t	0.90	2.86	m
6	78.60 d	1.61	3.96	79.17 d	0.83	3.05	m
7	76.18 ^d d			76.54 d	2.89	1.09	c
8	76.73 ^d d			77.73 d	0.82	3.38	m
9	144.28 s	3.50	1	145.98 s	2.01	0.75	c
10	124.35 d	1.60	4.07	125.16 d	0.94	3.05	m
11	139.88 ^e s			140.66 s	0.82	2.49	m
12	48.93 d	1.18	2.96	49.25 d	0.75	2.52	m
13	70.53 d	4.02	1.15	71.07 d	2.84	0.92	c
14	45.24 t	1.36	4.09	45.85 t	0.70	3.02	m
15	213.74 s	1	2.52	213.27 s	1	3.42	m
16	42.43 d	4.43	1.12	42.44 t	2.74	1	c
17	45.88 t	1.26	3.74	46.39 t	1.01	3.16	m
18	207.80 s	3.08	1.01	207.45 s	2.42	1.29	c
19	48.23 t	1.51	4.09	48.73 t	0.90	2.68	m
20	74.88 d	1.36	3.88	75.71 d	1.04	3.27	m
21	31.75 t	3.87	1.19	32.28 t	2.94	0.96	c
22	28.05 t	1.39	3.44	28.31 t	0.94	2.90	m
23	79.43 ^f d			80.04 d	0.78	2.75	m
24	77.14 ^d d			77.25 d	2.82	1.07	c
25	127.06 d	1.36	4.01	128.53 ^d d			m
26	130.67 d	4.41	1.22	131.13 d	2.29	0.85	c
27	124.84 d	1.44	3.57	125.50 d	0.92	2.98	m
28	140.08 ^e s			140.92 s	0.82	2.98	m
29	79.59 ^f d			79.90 d	0.96	2.45	m
30	148.95 s	0.53	2.00	149.43 s	0.90	2.23	m
31	31.25 t	3.13	0.85	31.74 t	2.92	0.98	c
32	29.91 t	0.74	2.09	30.42 t	1.18	3.11	m
33	22.28 t	2.77	0.73	22.80 t	3.87	1.04	c
34	13.78 q	0.77	2.32	14.17 q	0.88	2.68	m
35	15.32 q	1.06	2.77	15.39 ^g q			m
36	115.70 t	1.87	5.42	115.17 t	0.90	3.38	m
37	14.41 q	1.53	3.52	15.36 ^g q			m
38	15.32 q	0.87	2.84	15.78 q	0.94	2.36	m
39	16.00 q	0.79	2.88	16.24 q	0.78	2.99	m
40	12.36 q	1.05	3.17	12.60 q	1.21	3.08	m
41	109.99 q	1.37	3.61	110.35 t	1.10	2.55	m

^g These signals were overlapped with each other.

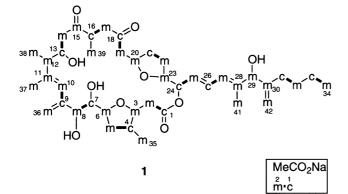


Figure 1. Labeling patterns of amphidinolide C (1) resulting from feeding experiments with ^{13}C -labeled acetates.

C-16/C-17 (37.1 Hz), C-18/C-19 (39.8 Hz), C-21/C-22 (32.2 Hz), C-24/C-25 (50.1 Hz), C-26/C-27 (56.7 Hz), C-31/C-32 (34.9 Hz), and C-33/C-34 (34.9 Hz). This was also supported by one-bond 13 C- 13 C correlations observed in the INADEQUATE spectrum of 1 labeled with $[1,2^{-13}C_2]$ sodium acetate. These results suggested that four parts from C-7 to C-10, C-16 to C-19, C-24 to C-27, and from C-31 to C-34 were likely to be diketide chains. Two irregular labeling patterns derived only from C-2 of acetates were observed for C-11-C-12 (m-m) and C-28-C-30 $(\mathbf{m}-\mathbf{m}-\mathbf{m})$, while five isolated C_1 units from C-2 of acetates were observed for C-3, C-6, C-15, C-20, and C-23. The C₁ branches at C-35, C-36, C-37, C-38, C-39, C-40, and C-41 were all derived from C-2 of acetates, in which the carbonyl carbons were lost.

The 13 C NMR spectra were recorded at 125 MHz with sweep width of 35,700 Hz using 'zgpg'. Number of scans were 8000. ^a In CDCl₃, intensity of each peak in the labeled 1 devided by that of the corresponding signal in the unlabeled 1, normalized to give a ratio of 1 for unenriched peak (C-15 for [1- 13 C]-acetate labeling and C-9 for [2- 13 C]-acetate labeling). ^b In C_6D_6 , intensity normalized to give a ratio of 1 for unenriched peak (C-15 for [1- 13 C]-acetate labeling and C-16 for [2- 13 C]-acetate labeling).

c denotes the carbon derived from C-1 of acetate, while m indicates the carbon derived from C-2 of acetate.

^d These signals were overlapped with the signals of the solvent.

^e These signals were overlapped with each other. These signals were overlapped with each other.

The incorporation patterns suggest that amphidinolide C(1)is a unique non-successive mixed polyketide consisting of four diketide chains, four acetate units, five isolated C₁ unit from C-2 of acetates, and a 'm-m' and a 'm-m-m' units derived only from C-2 of acetates. The previous biosynthetic studies of 26- and 15-, and 19-membered macrolides, amphidinolides H,¹⁰ J,^{11,12} and T1,⁹ respectively, have revealed that these are also generated through non-successive mixed polyketides. The C-28-C-30 portion in 1 was labeled as unique ' $\mathbf{m}(\mathbf{m}) - \mathbf{m}(\mathbf{O}) - \mathbf{m}(\mathbf{m})$ ', and such labeling patterns have been reported for those of C-39-C-41 part in vessotoxin from a dinoflagellate Protoceratium reticulatum. 13 The C-9–C-12 portion including the vicinally located one-carbon branches in amphidinolide C (1) disclosed the same labeling pattern, (c(m)-m-m(m)-m(m)), as those of amphidinolides G and H. 10 Two tetrahydrofuran portions in 1 showed the 'm-c-m-m' labeling pattern, while that of amphidinolide T1 has been revealed to be 'm-c-m-c'. 6 On the other hand, okadaic acid¹⁴ and goniodomin A¹⁵ also possess a tetrahydrofuran ring, which has been labeled as m-c-m-c and c-m-c-m, respectively.

3. Experimental

3.1. General methods

 13 C NMR spectra of **1** and **2** were recorded on a Bruker ARX-500 spectrometer. INADEQUATE spectra were obtained by a Bruker indasy pulse sequence. The repetition delay and the deray for creating antiphase C–C magnetization ($^{12}J_{CC}$) were 2.0 s and 11.4 ms, respectively. The F_1 and F_2 spectral widths were both 25,000 Hz, respectively. For each 256 t_1 increments, 32 transients (with four dummy scans) were accumulated in 2K data points. Zero-filling to 512 points for F_1 and multiplication with unshifted sine-bell windows were performed in both dimensions prior to 2D Fourier transformation. The resulting data matrix was 2K×512. The total measuring time was ca. 10 h.

3.2. General feeding experiments of ¹³C-labeled precursors

The dinoflagellate cultured in a 100 L nutrient-enriched seawater medium was supplemented with [1^{-13} C], [2^{-13} C], or [$1,2^{-13}$ C] sodium acetate (610 μ M) in one portion at 7 days after inoculation, and then the culture was harvested by centrifugation after 14 days. Sodium 13 C-bicarbonate (1.2 mM) was added to 100 L culture of the dinoflagellate at 10 days, and then the culture was harvested by centrifugation after 14 days. Extraction and isolation of amphidino-

lide C (1) from the harvested cells were carried out by the same procedure as described previously.² The ¹³C-labeled amphidinolide C (1) was obtained in 0.0010 yield as an average from wet weight of the cells.

Acknowledgements

We thank Professor T. Yamasu, University of the Ryukyus, and Dr M. Ishibashi for help with dinoflagellate collection. This work was partly supported by a Grant-in-aid from the Japan Securities Scholarship Foundation, a Grant-in-aid from Uehara Memorial Foundation, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- 1. Ishibashi, M.; Kobayashi, J. Heterocycles 1997, 44, 543-572.
- 2. Kobayashi, J.; Ishibashi, M.; Wälchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. *J. Am. Chem. Soc.* **1988**, *110*, 490–494.
- 3. Kubota, T.; Tsuda, M.; Kobayashi, J. *Org. Lett.* **2001**, *3*, 1363–1366.
- Kobayashi, J.; Tsuda, M.; Ishibashi, M.; Shigemori, H.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Antibiot. 1991, 44, 1259–1261
- Ishibashi, M.; Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun. 1987, 1127–1129.
- Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Yamasu, T.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. J. Nat. Prod. 1989, 52, 1036–1041.
- Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 2657–2658.
- 8. Kobayashi, J.; Kubota, T.; Endo, T.; Tsuda, M. *J. Org. Chem.* **2001**, *66*, 134–142.
- Sato, M.; Shimbo, K.; Tsuda, M.; Kobayashi, J. Tetrahedron Lett. 2000, 41, 503–506.
- 10. Kobayashi, J.; Takahashi, M.; Ishibashi, M. *J. Chem. Soc.*, *Chem. Commun.* **1995**, 1639–1640.
- Ishibashi, M.; Takahashi, M.; Kobayashi, J. *Tetrahedron* 1997, 53, 7827–7832.
- Satake, M. In Proceeding of 42nd Symposium on the Chemistry of Natural Products Okinawa 2000, 259–264.
- 13. Yasumoto, T.; Torigoe, K. J. Nat. Prod. 1991, 54, 1987.
- 14. Murakami, M.; Okita, Y.; Matsuda, H.; Okino, T.; Yamaguchi, K. *Phytochemistry* **1998**, *48*, 85–88.